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Abstract. This paper represents, the classification of user activities such as standing, walking 

and running, based on right shoulder, left shoulder, right elbow, left elbow, right knee, left knee 

and heap 3d angles data. Four supervised classification techniques namely, k-Nearest 
Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Naive Bayes (GNB), and Linear 
Discriminant Analysis (LDA) are compared in terms of correct classification rate, F-measure, 

recall, precision, and specificity. Based on our experiments, the results obtained show that the k-

NN classifier provides the best performance compared to other supervised classification 

algorithms. 
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1. Introduction 
 

The capability of classifying the physical activity performed by a human is highly attractive for 

many applications in the field of computer vision such as healthcare monitoring, transportation 

mode recognition [1], indoor positioning, navigation, location-based services, context-aware 

behaviors,targeted advertising, and mobile social networks [2], customer behavior analysis in 

shopping mall and in developing advanced human-machine interfaces.Recent years have 

witnessed a significantincrease in the variety of consumer devices, which are not only equipped 

with traditional sensors like GPS, camera, Wi-Fi and Bluetooth but also newly-developed 

sensors like accelerometer, gyroscope,and barometer. These sensors can capture the intensity and 

duration of the activity and are even ableto sense the activity context. This can help consumers 

assess their activity levels and change theiractivity behaviors to keep fit and healthy. 

Equipped with a variety of sensors, smartphones, on-body devices are more attractive for activity 

recognition compared to our proposed model 3D joint angle data because our model do not 

disturbusers’ normal activities [3]. 

 

In this paper the most general approaches to automatic classification of human physical activity 

such as standing, walking and running are introduced and discussed. With regards to this 

problem, the main steps considering as generating 3D pose of human, calculating the 3d joint 

angles (right shoulder, left shoulder, right elbow, left elbow, right knee, left knee and heap), 

feature selection, extraction and classification are reexamined by following the diagram of 

Figure 1. 
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Figure 1. Conceptual scheme of a generic classification system with supervised learning. 

1.1 Related Works 
In the last years, many solutions for human activity recognition have been proposed, some of them aimed to extract 

features from depth data, such as [4], where the main idea is to evaluate spatiotemporal depth sub volume 

descriptors. A group of hyper surface normals (polynormal), containing geometry and local motion information, is 

extracted from depth sequences. The polynormals are then aggregated to constitute the final representation of the 

depth map, called Super Normal Vector (SNV). This representation can include 

also skeleton joint trajectories, improving the recognition results when people move a lot in a sequence of depth 

frames. Depth images can be seen as sequence features modeled temporally as subspaces lying on the Grassmann 

manifold [5]. This representation, starting from the orientation of the normal vector at every surface point, describes 

the geometric appearance and the dynamic of human body without using 

joint position. Other works proposed holistic descriptors: the HON4D descriptor [6], which is based on the 

orientations of normal surfaces in 4D, and HOPC descriptor [7], which is able to represent the geometric 

characteristics of a sequence of 3D points. 

 

Other works exploit both depth and skeleton data; for example, the 3.5D representation combines the skeleton joint 

information with features extracted from depth images, in the region surrounding each node of interest [8]. The 

features are extracted using an extended Independent Subspace Analysis (ISA) algorithm by applying it only to local 

region of joints instead of the entire video, thus improving the training efficiency. The depth information makes it 

easy to extract the human silhouette, which can be concatenated with normalized skeleton features, to improve the 

recognition rate [9]. Depth and skeleton features can be combined at different levels of the activity recognition 

algorithm. Althloothi et al. [10] proposed a method where the data are fused at the kernel level, instead of the feature 

level, using the Multiple Kernel Learning (MKL) technique. On the other hand, fusion at the feature level of 

spatiotemporal features and skeleton joints is performed in [11]. In such a work, several spatiotemporal interest 

point detectors, such as Harris 3D, ESURF [12], and HOG3D [13], have been fused using regression forests with the 

skeleton joint features consisting of posture, movement, and offset information. 

Skeleton joints extracted from depth frames can be combined also with RGB data. Luo et al. [14] proposed a human 

action recognition framework where the pair wise relative positions of joints and Center-Symmetric Motion Local 

Ternary Pattern (CS-Mltp) features from RGB are fused both at feature level and at classifier level.  
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1.2 Generating 3d Pose of Human 
Figure 1 illustrates the main contribution of our approach, a new multi-stage CNN architecture 

that can be trained end-to-end to estimate jointly 2D and 3D joint locations. Crucially it includes 

a novel layer, based on a probabilistic 3D model of human pose, responsible for lifting 2D poses 

into 3D and propagating 3D information about the skeletal structure to the 2D convolutional 

layers. In thisway, the prediction of 2D pose benefits from the 3D information encoded. Section 

4 describes the new probabilistic 3D model of human pose, trained on a dataset of 3D mocap 

data. Section 5 describes all the new components and layers of the CNN architecture. Finally, 

Section 6 describesexperimental evaluation on the Human3.6M dataset wherewe obtain state-of-

the-art results. In addition, we show qualitative results on images from the MPII and Leeds 

datasets 
 

One fundamental challenge in creating models of humanposes lies in the lack of access to 3D 

data of sufficient variety to characterize the space of human poses. To compensate for this lack 

of data we identify and eliminate confounding factors such as rotation in the ground plane, limb 

length, and left-right symmetry that lead to conceptually similar poses being unrecognized in the 

training data. Simple preprocessing eliminates some factors. Size variance is addressed by 

normalizing the data such that the sum of squared limb lengths on the human skeleton is one; 

while left-right symmetry is exploited by flipping each pose in the x-axis and re-annotating left 

as right and vice-versa. 

 

1.3 Aligning 3D Human Poses in the Training Set 

 

Allowing for rotational invariance in the ground-planeis more challenging and requires 

integration with the datamodel. We seek the optimal rotations for each pose suchthat after 

rotating the poses they are closely approximatedby a low-rank compact Gaussian distribution.We 

formulate this as a problem of optimization over aset of variables. Given a set ofNtraining 3D 

poses, each represented as a (3×L) Matrix Pi of 3D landmark locations, where i∈{1,2,..,N} and L 

is the number of humanjoints/landmarks; we seek global estimates of an average3D poseμ, a set 

ofJorthonormal basis matrices1eandnoise varianceσ, alongside per sample rotationsR I and basis 

coefficientsaito minimize the following estimate 

Where ai·e=∑jai,jej is the tensor analog of a multiplication between a vector and a matrix, 

and||·||22 is the squared Frobenius norm of the matrix. Here the y-axis is assumed to point up, 

and the rotation matrices Ri considered are ground plane rotations. With the large number of 3D 

pose samples considered (of the order of 1 million when training on the Human3.6M dataset 

[15]), and the complex interdependencies between samples for e and σ , the memory 

requirements mean that it is not possible to solve directly as a joint optimization over all 

variables using a non linear solver such as Ceres. Instead, we carefully initializeand alternate 

between performing closed-form PPCA [38] to update μ,a, e,σ; and updating Ri using Ceres [2] 

to minimize the above error. As we do this, we steadily increase the size of the basis from 1 

through to its target size J. This stops apparent deformations that could be resolved through 

rotations from becoming locked into the basis at an early stage, and empirically leads to lower 

cost solutions. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020                                                           820 
ISSN 2229-5518  
 

IJSER © 2020 

http://www.ijser.org 

To initialize we use a variant of the Tomasi-Kanade [39]algorithm to estimate the mean 3D pose 

μ. As theycomponent is not altered by planar rotations, we take as our estimate of 

theycomponent ofμ, the mean of each point intheydirection. For thexandzcomponents, we 

interleavethexandzcomponents of each sample and concatenate them into a large 2N×L matrix 

M, and find the rank twoapproximation of this such thatM≈A·B. We then calculateˆAby 

replacing each adjacent pair of rows of A with the closest orthonormal matrix of rank two, and 

takeˆA†Mas our estimate2of the x and z components of μ. 

 
The end result of this optimization is a compact lowrank approximation of the data in which all 

reconstructed poses appear to have the same orientation (see Figure 2). Inthe next section we 

extend the model to be described as a multi-modal distribution to better capture the variations in 

the space of 3D human poses. 

 

1.4 3D Joint Angles Calculation 

To compute the angle between two vectors in 3D space: 

 Calculate the magnitude of the vectors 

 Divide each vector by its vector magnitude to compute its unit vector 

 Compute the dot product of the unit vectors 

 Take the arcosine of the dot product of the unit vectors to get the angle between the vectors 

in radians. 

 

Figure2: Angle calculation of right elbow joint from 3D coordinate space. 

Forexample, if we calculate the angle of right elbow as shown in Figure 1 we have to generate 

the vector 𝐴 and𝐵as 

𝐴 = 𝑎𝑏 = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, 𝑎3 − 𝑏3) = [𝐴1, 𝐴2, 𝐴3] 

𝐵 = 𝑏𝑐 = (𝑏1 − 𝑐1, 𝑏2 − 𝑐2, 𝑏3 − 𝑐3)  = [𝐵1, 𝐵2, 𝐵3] 

The dot product of vector A and B is defined as 

𝐴. 𝐵 = 𝐴1𝐵1 + 𝐴2𝐵2 + 𝐴3𝐵3 

The magnitude of a vector A is denoted by ||A||. The dot product of vector A with itself is 

𝐴. 𝐴 = ||𝐴||2
=𝐴1

2 + 𝐴2
2 + 𝐴3

2
 

Which gives 
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||𝐴|| = √𝐴. 𝐴 = √𝐴1
2 + 𝐴2

2 + 𝐴3
2 

Similarly, we can calculate  

||𝐵|| = √𝐵. 𝐵 = √𝐵1
2 + 𝐵2

2 + 𝐵3
2 

The dot product of two non-zero Euclidean vectors A and B is given by 

𝐴. 𝐵 = ||𝐴||||𝐵|| cos 𝜃 

Where 𝜃 is the angle between A and B. 

Similar way we calculate the right shoulder, left shoulder, left elbow, heap, right knee and left 

knee joint angles labeled in Figure 3. The graphical plot of different joint angles to classify the 

standing, walking and running are shown in Figure 4, 5 and 6 respectively. 

 
Figure 3. Graphical illustration of different joint angles 
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Figure4: Plot of the degree of 7 joint angles used for classification. 
 

 
 

Figure5: Plot of the degree of 7 joint angles used for classification. 
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Figure6: Plot of the degree of 7 joint angles used for classification. 

 

 

2. Performance Metrics 

To verify the performance of the proposed models, we employed five widely used evaluation 

metrics for multi-class classification. 

i. Precision 

The precision or positive predictive value (PPV) is defined as the proportion of 

instances that belongs to a class (TP: True Positive) by the total instances, including 

TP and FP (False Positive) classified by the classifier as belong to this particular 

class. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑷) 

ii. Recall 

The recall or sensitivity is defined as the proportion of instances classified in one 

class bythe total instances belonging to that class. The total number of instances of a 

class includes TP and FN (False Negative). 

𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑵) 

iii. Accuracy 

Measures the proportion of correctly predicted labels over all predictions: 

𝑶𝒗𝒆𝒓 𝒂𝒍𝒍 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = (𝑻𝑷 + 𝑻𝑵)/(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵) 

iv. F1 measure:  

A weighted harmonic means of precision and recall. The F1 score can be interpreted 

as a weighted average of the precision and recall, where an F1 score reaches it best 

value at 1 and worst score at 0. The relative contribution of precision and recall to the 

F1 score equal. The formula for the F1 measure is: 

𝑭𝟏 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 = (𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)/(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍) 

v. Support: 

The support is the number of samples of the true response that lie in that class. 
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4. Experimental Results 
 

In this section, we review and compare the performance of different supervised machine 

learning approaches to recognize the different human activities. 
 

The classification result obtained from our experiment are shown in Tables 1,2,3 and 4. It is 

seen from tables that k-NN classifier gives the highest accuracy and averagely it is 94%. 

Gaussian Naïve Bayes (GNB) and Linear Discriminant Analysis (LDA) classifiers accuracy 

are approximately same and it is averagely 89% and 88% respectively. 

 

Activity(knn) Precision Recall F1-Score Support 

Standing 0.89 0.98 0.93 200 

Walking 0.96 0.89 0.92 200 

Running 0.99 0.95 0.97 200 

Avg/Total 0.94 0.94 0.94 600 

Table1: Recognition accuracy for k-NN classifier. 

 

Activity(gnb) Precision Recall F1-Score Support 

Standing 0.82 0.95 0.88 200 

Walking 0.87 0.83 0.85 200 

Running 0.99 0.87 0.93 200 

Avg/Total 0.89 0.89 0.89 600 

Table2: Recognition accuracy for GNB classifier. 

 

Activity(lda) Precision Recall F1-Score Support 

Standing 0.74 0.94 0.83 200 

Walking 0.89 0.74 0.81 200 

Running 1.00 0.88 0.94 200 

Avg/Total 0.88 0.86 0.86 600 

Table3: Recognition accuracy for LDA classifier. 

 

Activity(svm) Precision Recall F1-Score Support 

Standing 0.96 0.78 0.86 200 

Walking 0.96 0.52 0.67 200 

Running 0.61 1.00 0.75 200 

Avg/Total 0.84 0.77 0.76 600 

Table4: Recognition accuracy for SVM classifier. 
 

Figure7 shows the confusion matrix for the recognition result of k-NN classifier. It can be 

found that only 35 out of 600 samples are misclassified. The activities “standing” and 

“walking” are less discriminative than running in this case. 
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Figure7: Confusion matrix for k-NN classifier. 

Figure8 shows the confusion matrix for the recognition result of GNB classifier. It can be 

found that only 69 out of 600 samples are misclassified. The activities “standing” and 

“walking” are less discriminative than running in this case. 

 

  
Figure8: Confusion matrix for GNB classifier. 

 

Figure9 shows the confusion matrix for the recognition result of LDA classifier. It can be 

found that only 86 out of 600 samples are misclassified. The activities “standing” and 

“walking” are less discriminative than running in this case. 
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Figure9: Confusion matrix for LDA classifier. 

 

Figure 10 shows the confusion matrix for the recognition result of SVM classifier. Each 

result of the confusion matrix gives the number of samples that are classified to certain 

activity classes labeled by the columns. Each diagonal element in the matrix gives the 

number of samples belonging to one activity that are correctly classified. It can be found that 

only 141 out of 600 samples are misclassified. The activities “standing” and “walking” are 

less discriminative than running in this case. 

 

  
Figure10: Confusion matrix for SVM classifier. 

 

Classifier Accuracy on training set Accuracy on validation set 

SVM 1.00 0.77 

k-NN 0.96 0.94 

LDA 0.85 0.86 

GNB 0.87 0.89 

Table5: Accuracy on training set and validation set on different classifier. 

Figure 11 shows the learning curve of different classifier. The learning curve shows the validation and 

training score of an estimator for varying numbers of training samples. If both the validation score and 
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the training score converge to a value that is too low with increasing size of the training size of the 

training set, we will not benefit much from more training data 

 

Figure 11: Learning curve for GNB, SVM, LDA and k-NN classifier. 

Conclusion 

We have presented a review of different classification techniques that were used to recognize 

human activities from 3d joint skeletal data. This paper describes the whole structure of the 

recognition detection process, from data acquisition to classification. 
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